Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.099
Filter
Add more filters

Publication year range
1.
Phytomedicine ; 128: 155577, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608488

ABSTRACT

BACKGROUND: Gastrointestinal mucositis stands as one of the most severe side effects of irinotecan (CPT-11). however, only palliative treatment is available at present. Therefore, there is an urgent need for adjunctive medications to alleviate the side effects of CPT-11. PURPOSE: In this study, our objective was to explore whether ginsenoside Rh4 could serve as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, thereby alleviating the side effects of CPT-11 and augmenting its anti-tumor efficacy. STUDY DESIGN: A CPT-11-induced gastrointestinal mucositis model was used to investigate whether ginsenoside Rh4 alleviated CPT-11-induced gastrointestinal mucositis and enhanced the anti-tumor activity of CPT-11. METHODS: In this study, we utilized CT26 cells to establish a xenograft tumor model, employing transcriptomics, genomics, and metabolomics techniques to investigate the impact of ginsenoside Rh4 on CPT-11-induced gastrointestinal mucositis and the effect on the anti-tumor activity of CPT-11. Furthermore, we explored the pivotal role of gut microbiota and their metabolites through fecal microbiota transplantation (FMT) experiments and supplementation of the key differential metabolite, hyodeoxycholic acid (HDCA). RESULTS: The results showed that ginsenoside Rh4 repaired the impairment of intestinal barrier function and restored intestinal mucosal homeostasis in a gut microbiota-dependent manner. Ginsenoside Rh4 treatment modulated gut microbiota diversity and upregulated the abundance of beneficial bacteria, especially Lactobacillus_reuteri and Akkermansia_muciniphila, which further regulated bile acid biosynthesis, significantly promoted the production of the beneficial secondary bile acid hyodeoxycholic acid (HDCA), thereby alleviating CPT-11-induced gut microbiota dysbiosis. Subsequently, ginsenoside Rh4 further alleviated gastrointestinal mucositis through the TGR5-TLR4-NF-κB signaling pathway. On the other hand, ginsenoside Rh4 combination therapy could further reduce the weight and volume of colon tumors, promote tumor cell apoptosis, and enhance the anti-tumor activity of CPT-11 by inhibiting the PI3K-Akt signaling pathway, thus exerting a synergistic anti-tumor effect. CONCLUSION: In summary, our findings confirm that ginsenoside Rh4 can alleviate CPT-11-induced gastrointestinal mucositis and enhance the anti-tumor activity of CPT-11 by modulating gut microbiota and its related metabolites. Our study validates the potential of ginsenoside Rh4 as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, offering new therapeutic strategies for addressing chemotherapy side effects and improving chemotherapy efficacy.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Irinotecan , Mucositis , Ginsenosides/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Irinotecan/pharmacology , Mucositis/chemically induced , Mucositis/drug therapy , Mice , Cell Line, Tumor , Mice, Inbred BALB C , Fecal Microbiota Transplantation , Xenograft Model Antitumor Assays , Male , Antineoplastic Agents, Phytogenic/pharmacology
2.
J Ethnopharmacol ; 330: 118187, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38615699

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bryonia dioica Jacq., Evernia prunastri (L.) Ach., Telephium imperati L., and Aristolochia longa L. are species widely used in traditional medicine to treat several diseases including cancer. Conjugation of two or more extracts is an approach to improve the effectiveness of their pharmacological activities. AIM OF THE STUDY: To evaluate the synergistic anticancer and anti-angiogenic effects of medicinal plants and edible species combinations. MATERIALS AND METHODS: In this work, B. dioica, E. prunastri, Telephium imperati, and Aristolochia longa extracts were conjugated to form four mixtures. The antiproliferative effect of mixtures on several carcinoma cells was examined by MTT assay, and the antiangiogenic activity was estimated through Hen's egg test in vivo. Moreover, in an Ovo model, 35 fertilized Ross eggs were used to test the embryotoxicity of mixtures. RESULTS: At the highest concentration of 200 µg/mL, both mixtures exerted an important cytotoxic effect against human carcinoma cells. The mixture BETE (Bryonia Evernia Telephium Extract) significantly reduced HT-29, PC-3, and A-549 cell viability. Likewise, this mixture strongly suppressed vascularization in vivo at 200 µg/mL. Interestingly, no signs of toxicity on Perdix embryos were recorded within 21 days of treatment. More importantly, the mixture did not have any cytotoxic effect on non cancerous cells. CONCLUSION: Taken together, our results suggest that the synergy between B. dioica, E. prunastri and T. imperati may be promising for developing new anti-cancer treatments.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents, Phytogenic , Drug Synergism , Plant Extracts , Plants, Medicinal , Spices , Angiogenesis Inhibitors/pharmacology , Animals , Humans , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Cell Line, Tumor , Chick Embryo , Antineoplastic Agents, Phytogenic/pharmacology , Algeria , Cell Proliferation/drug effects , Cell Survival/drug effects , Chickens
3.
J Ethnopharmacol ; 330: 118195, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641080

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is a frequently used herbal medicine worldwide, and is used to treat cough, hepatitis, cancer and influenza in clinical practice of traditional Chinese medicine. Modern pharmacological studies indicate that prenylated flavonoids play an important role in the anti-tumor activity of licorice, especially the tumors in stomach, lung, colon and liver. Wighteone is one of the main prenylated flavonoids in licorice, and its possible effect and target against colorectal cancer have not been investigated. AIM OF THE STUDY: This study aimed to investigate the anti-colorectal cancer effect and underlying mechanism of wighteone. MATERIALS AND METHODS: SW480 human colorectal cancer cells were used to evaluate the in vitro anti-colorectal cancer activity and Akt regulation effect of wighteone by flow cytometry, phosphoproteomic and Western blot analysis. Surface plasmon resonance (SPR) assay, molecular docking and dynamics simulation, and kinase activity assay were used to investigate the direct interaction between wighteone and Akt. A nude mouse xenograft model with SW480 cells was used to verify the in vivo anti-colorectal cancer activity of wighteone. RESULTS: Wighteone inhibited phosphorylation of Akt and its downstream kinases in SW480 cells, which led to a reduction in cell viability. Wighteone had direct interaction with both PH and kinase domains of Akt, which locked Akt in a "closed" conformation with allosteric inhibition, and Gln79, Tyr272, Arg273 and Lys297 played the most critical role due to their hydrogen bond and hydrophobic interactions with wighteone. Based on Akt overexpression or activation in SW480 cells, further mechanistic studies suggested that wighteone-induced Akt inhibition led to cycle arrest, apoptosis and autophagic death of SW480 cells. Moreover, wighteone exerted in vivo anti-colorectal cancer effect and Akt inhibition activity in the nude mouse xenograft model. CONCLUSION: Wighteone could inhibit growth of SW480 cells through allosteric inhibition of Akt, which led to cell cycle arrest, apoptosis and autophagic death. The results contributed to understanding of the anti-tumor mechanism of licorice, and also provided a rationale to design novel Akt allosteric inhibitors for the treatment of colorectal cancer.


Subject(s)
Antineoplastic Agents, Phytogenic , Colorectal Neoplasms , Flavonoids , Glycyrrhiza , Mice, Nude , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , Glycyrrhiza/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/therapeutic use , Flavonoids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Allosteric Regulation/drug effects , Mice , Mice, Inbred BALB C , Apoptosis/drug effects , Male
4.
J Ethnopharmacol ; 330: 118228, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38643863

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY: In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS: The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS: EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS: EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.


Subject(s)
Acetates , Activating Transcription Factor 3 , Mice, Nude , Network Pharmacology , Prostatic Neoplasms , Receptors, Androgen , Xenograft Model Antitumor Assays , Male , Animals , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Acetates/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Mice , Apoptosis/drug effects , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Transcriptome/drug effects , Mice, Inbred BALB C , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects
5.
J Agric Food Chem ; 72(17): 9717-9734, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624258

ABSTRACT

Plants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Down-Regulation , Plant Extracts , Plants, Medicinal , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Plants, Medicinal/chemistry , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Terminalia/chemistry , Mucuna/chemistry
6.
Phytomedicine ; 128: 155539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522311

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE: The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS: Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS: Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION: Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.


Subject(s)
Antineoplastic Agents, Phytogenic , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Glycolysis , Mice, Nude , Mitochondria , Oxidative Phosphorylation , Saponins , Humans , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Glycolysis/drug effects , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Oxidative Phosphorylation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Mice, Inbred BALB C , Mice , Cell Proliferation/drug effects , Carcinoma, Squamous Cell/drug therapy , Xenograft Model Antitumor Assays
7.
Int J Biol Macromol ; 266(Pt 2): 130943, 2024 May.
Article in English | MEDLINE | ID: mdl-38522690

ABSTRACT

The aim of this study is to evaluate and compare the biological properties of different extracts (methanol, ethanol, and water) obtained from Gypsophila eriocalyx (G. eriocalyx), a medicinal plant traditionally used in Turkey. The components of different extracts were defined using the GC-MS method. The effects of G. eriocalyx extracts on cell proliferation, apoptosis, and cell cycle arrest in MDA-MB-231 breast cancer as well as in vitro antioxidant, enzyme inhibition, and antimicrobial activities were investigated. In accordance with the results obtained, although ethanol and methanol extracts of G. eriocalyx show higher antioxidant activity than G. eriocalyx water extract, enzyme inhibition activities of the extracts were not found to be significant compared to the reference drug. The methanol and ethanol extract of G. eriocalyx exhibited moderate antimicrobial activity against Staphylococcus aureus and methanol extract showed significant antimicrobial activity against Bacillus cereus. In addition, both extracts significantly inhibited cell viability in a dose-dependent manner in breast cancer cells. The cell growth inhibition by methanol and ethanol extracts induced S phase cell-cycle arrest and apoptosis in MDA-MB-231 cells. Lastly, in order to compare the activities of the chemicals found in Gypsophila eriocalyx plant extract, their activities against various proteins that are breast cancer protein (PDB ID:1A52 and 1JNX), antioxidant protein (PDB ID: 1HD2), AChE enzyme protein (PDB ID: 4M0E), BChE enzyme protein (PDB ID: 5NN0), and Escherichia coli protein (PDB ID: 4PRV)were compared. Then, ADME/T analysis calculations were made to examine the effects of molecules with high activity on human metabolism. Eventually, G. eriocalyx is thought to be a potent therapeutic herb that can be considered as an alternative and functional therapy for the management of diseases of a progressive nature related to oxidative damage such as infection, diabetes, cancer, and Alzheimer's disease.


Subject(s)
Antioxidants , Apoptosis , Cell Proliferation , Plant Extracts , Plants, Medicinal , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Cell Line, Tumor , Turkey , Antioxidants/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Caryophyllaceae/chemistry , Cell Survival/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Cycle Checkpoints/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
8.
Phytomedicine ; 128: 155316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518635

ABSTRACT

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Subject(s)
Cell Movement , Cell Proliferation , Janus Kinase 2 , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Stilbenes , Stomach Neoplasms , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stilbenes/pharmacology , Animals , Humans , Cell Proliferation/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle Checkpoints/drug effects , Network Pharmacology , Male , Neoplasm Metastasis , Epithelial-Mesenchymal Transition/drug effects
9.
Phytomedicine ; 128: 155333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518633

ABSTRACT

BACKGROUND: Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS: To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS: Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION: In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Signal Transduction , Carcinoma, Non-Small-Cell Lung/drug therapy , RNA, Long Noncoding/genetics , Humans , Animals , Lung Neoplasms/drug therapy , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Mice, Nude , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Ailanthus/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Quassins/pharmacology , RNA Helicases/metabolism
10.
Phytomedicine ; 128: 155371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518649

ABSTRACT

BACKGROUND: Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE: The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS: The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS: DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION: This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.


Subject(s)
Irinotecan , Lactones , Lymphocyte Antigen 96 , Mucositis , Sesquiterpenes , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Mucositis/chemically induced , Mucositis/drug therapy , Mice , Lactones/pharmacology , Humans , Lymphocyte Antigen 96/metabolism , Male , NF-kappa B/metabolism , Signal Transduction/drug effects , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , THP-1 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred C57BL , Mice, Inbred BALB C , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
11.
Phytomedicine ; 128: 155527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489888

ABSTRACT

BACKGROUND: Pancreatic cancer, a tumor with a high metastasis rate and poor prognosis, is among the deadliest human malignancies. Investigating effective drugs for their treatment is imperative. Moracin D, a natural benzofuran compound isolated from Morus alba L., shows anti-inflammation and anti-breast cancer properties and is effective against Alzheimer's disease. However, the effect and mechanism of Moracin D action in pancreatic cancer remain obscure. PURPOSE: To investigate the function and molecular mechanism of Moracin D action in repressing the malignant progression of pancreatic cancer. METHODS: Pancreatic cancer cells were treated with Moracin D, and cell proliferation was evaluated by cell counting kit-8 (CCK-8) and immunofluorescence assays. The clonogenicity of pancreatic cancer cells was assessed based on plate colony formation and soft agar assay. Flow cytometry was used to detect cell apoptosis. The expression of proteins related to the apoptosis pathway was determined by Western blot analysis. Moracin D and XIAP were subjected to docking by auto-dock molecular docking analysis. Ubiquitination levels of XIAP and the interaction of XIAP and PARP1 were assessed by co-immunoprecipitation analysis. Moracin D's effects on tumorigenicity were assessed by a tumor xenograft assay. RESULTS: Moracin D inhibited cell proliferation, induced cell apoptosis, and regulated the protein expression of molecules involved in caspase-dependent apoptosis pathways. Moracin D suppressed clonogenicity and tumorigenesis of pancreatic cancer cells. Mechanistically, XIAP could interact with PARP1 and stabilize PARP1 by controlling its ubiquitination levels. Moracin D diminished the stability of XIAP and decreased the expression of XIAP by promoting proteasome-dependent XIAP degradation, further blocking the XIAP/PARP1 axis and repressing the progression of pancreatic cancer. Moracin D could dramatically improve the chemosensitivity of gemcitabine in pancreatic cancer cells. CONCLUSION: Moracin D repressed cell growth and tumorigenesis, induced cell apoptosis, and enhanced the chemosensitivity of gemcitabine through the XIAP/PARP1 axis in pancreatic cancer. Moracin D is a potential therapeutic agent or adjuvant for pancreatic cancer.


Subject(s)
Apoptosis , Benzofurans , Benzopyrans , Cell Proliferation , Pancreatic Neoplasms , Poly (ADP-Ribose) Polymerase-1 , X-Linked Inhibitor of Apoptosis Protein , Pancreatic Neoplasms/drug therapy , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Animals , Benzofurans/pharmacology , Mice, Nude , Morus/chemistry , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Molecular Docking Simulation , Mice, Inbred BALB C , Gemcitabine , Xenograft Model Antitumor Assays
12.
Phytomedicine ; 128: 155521, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489891

ABSTRACT

BACKGROUND: The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE: With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS: A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS: The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION: This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.


Subject(s)
Antineoplastic Agents, Phytogenic , Drugs, Chinese Herbal , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Drug Delivery Systems , Animals , Neoplasms/drug therapy , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry
13.
Phytomedicine ; 128: 155379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503157

ABSTRACT

BACKGROUND: c-MET is a receptor tyrosine kinase which is classically activated by HGF to activate its downstream signaling cascades such as MAPK, PI3K/Akt/mTOR, and STAT3. The c-MET modulates cell proliferation, epithelial-mesenchymal transition (EMT), immune response, morphogenesis, apoptosis, and angiogenesis. The c-MET has been shown to serve a prominent role in embryogenesis and early development. The c-MET pathway is deregulated in a broad range of malignancies, due to overexpression of ligands or receptors, genomic amplification, and MET mutations. The link between the deregulation of c-MET signaling and tumor progression has been well-documented. Overexpression or overactivation of c-MET is associated with dismal clinical outcomes and acquired resistance to targeted therapies. Since c-MET activation results in the triggering of oncogenic pathways, abrogating the c-MET pathway is considered to be a pivotal strategy in cancer therapeutics. Herein, an analysis of role of the c-MET pathway in human cancers and its relevance in bone metastasis and therapeutic resistance has been undertaken. Also, an attempt has been made to summarize the inhibitory activity of selected natural compounds towards c-MET signaling in cancers. METHODS: The publications related to c-MET pathway in malignancies and its natural compound modulators were obtained from databases such as PubMed, Scopus, and Google Scholar and summarized based on PRISMA guidelines. Some of the keywords used for extracting relevant literature are c-MET, natural compound inhibitors of c-MET, c-MET in liver cancer, c-MET in breast cancer, c-MET in lung cancer, c-MET in pancreatic cancer, c-MET in head and neck cancer, c-MET in bone metastasis, c-MET in therapeutic resistance, and combination of c-MET inhibitors and chemotherapeutic agents. The chemical structure of natural compounds was verified in PubChem database. RESULTS: The search yielded 3935 publications, of which 195 reference publications were used for our analysis. Clinical trials were referenced using ClinicalTrials.gov identifier. The c-MET pathway has been recognized as a prominent target to combat the growth, metastasis, and chemotherapeutic resistance in cancers. The key role of the c-MET in bone metastasis as well as therapeutic resistance has been elaborated. Also, suppressive effect of selected natural compounds on the c-MET pathway in clinical/preclinical studies has been discussed.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-met , Signal Transduction , Humans , Proto-Oncogene Proteins c-met/metabolism , Neoplasms/drug therapy , Signal Transduction/drug effects , Biological Products/pharmacology , Biological Products/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Bone Neoplasms/metabolism
14.
Phytomedicine ; 128: 155377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503154

ABSTRACT

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Subject(s)
Cell Proliferation , Neoplastic Stem Cells , Pancreatic Neoplasms , Transcription Factor CHOP , Xenograft Model Antitumor Assays , Humans , Animals , Pancreatic Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Transcription Factor CHOP/metabolism , Mice , Quinazolines/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Mice, Nude , Evodia/chemistry , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
15.
Phytomedicine ; 128: 155451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513378

ABSTRACT

BACKGROUND: Phytochemicals are natural compounds derived from plants, and are now at the forefront of anti-cancer research. Macrophage immunotherapy plays a crucial role in the treatment of colorectal cancer (CRC). In the context of colorectal cancer, which remains highly prevalent and difficult to treat, it is of research value to explore the potential mechanisms and efficacy of phytochemicals targeting macrophages for CRC treatment. PURPOSE: The aim of this study was to gain insight into the role of phytochemical-macrophage interactions in regulating CRC and to provide a theoretical basis for the development of new therapeutic strategies in the future. STUDY DESIGN: This review discusses the potential immune mechanisms of phytochemicals for the treatment of CRC by summarizing research of phytochemicals targeting macrophages. METHODS: We reviewed the PubMed, EMBASE, Web of Science and CNKI databases from their initial establishment to July 2023 to classify and summaries phytochemicals according to their mechanism of action in targeting macrophages. RESULTS: The results of the literature review suggest that phytochemicals interfere with CRC development by affecting macrophages through four main mechanisms. Firstly, they modulate the production of cytotoxic substances, such as NO and ROS, by macrophages to exert anticancer effects. Secondly, phytochemicals polarize macrophages towards the M1 phenotype, inhibit M2 polarisation and enhance the anti-tumour immune responses. Thirdly, they enhance the secretion of macrophage-derived cytokines and alter the tumour microenvironment, thereby inhibiting tumor growth. Finally, they activate the immune response by targeting macrophages, triggering the recruitment of other immune cells, thereby enhancing the immune killing effect and exerting anti-tumor effects. These findings highlight phytochemicals as potential therapeutic strategies to intervene in colorectal cancer development by modulating macrophage activity, providing a strong theoretical basis for future clinical applications. CONCLUSION: Phytochemicals exhibit potential anti-tumour effects by modulating macrophage activity and intervening in the colorectal cancer microenvironment by multiple mechanisms.


Subject(s)
Colorectal Neoplasms , Macrophages , Phytochemicals , Colorectal Neoplasms/drug therapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Macrophages/drug effects , Humans , Animals , Disease Progression , Antineoplastic Agents, Phytogenic/pharmacology , Tumor Microenvironment/drug effects , Reactive Oxygen Species/metabolism
16.
Phytomedicine ; 128: 155536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513379

ABSTRACT

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Subject(s)
Apoptosis , Caspase 3 , Caspase 7 , Lung Neoplasms , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Lung Neoplasms/drug therapy , Caspase 3/metabolism , Cell Line, Tumor , Caspase 7/metabolism , Asteraceae/chemistry , Lactones/pharmacology , A549 Cells , Cell Proliferation/drug effects , Sesquiterpenes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Plant Leaves/chemistry , Animals , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology
17.
Phytomedicine ; 128: 155432, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518645

ABSTRACT

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Subject(s)
Antineoplastic Agents, Phytogenic , Saponins , Steroids , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Humans , Steroids/pharmacology , Steroids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Neoplasms/drug therapy , Animals , Apoptosis/drug effects
18.
Phytomedicine ; 128: 155418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518647

ABSTRACT

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Subject(s)
Apigenin , Breast Neoplasms , Cell Proliferation , Glucuronates , Mice, Inbred NOD , Neoplastic Stem Cells , Scutellaria , Animals , Apigenin/pharmacology , Scutellaria/chemistry , Glucuronates/pharmacology , Neoplastic Stem Cells/drug effects , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, SCID , Antineoplastic Agents, Phytogenic/pharmacology , Mice , Plant Extracts/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Hyaluronan Receptors/metabolism
19.
Phytomedicine ; 128: 155338, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520835

ABSTRACT

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Subject(s)
CDC2 Protein Kinase , Carcinoma, Hepatocellular , Codonopsis , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Animals , Humans , Codonopsis/chemistry , Cell Line, Tumor , CDC2 Protein Kinase/metabolism , Mice , Cell Proliferation/drug effects , beta Catenin/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Nude , Mice, Inbred BALB C , Male , Cell Movement/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Xenograft Model Antitumor Assays , Drugs, Chinese Herbal/pharmacology
20.
Phytomedicine ; 128: 155488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493718

ABSTRACT

BACKGROUND: This research aimed to investigate the anti-tumor effects and underlying genetic mechanisms of herbal medicine Triphala (TRP) in oral squamous cell carcinoma (OSCC). METHODS: The target genes of Triphala (TRP) in oral squamous cell carcinoma (OSCC) were identified, and subsequent functional enrichment analysis was conducted to determine the enriched signaling pathways. Based on these genes, a protein-protein interaction network was constructed to identify the top 10 genes with the highest degree. Genes deregulated in OSCC tumor samples were identified to be hub genes among the top 10 genes. In vitro experiments were performed to investigate the influence of TRP extracts on the cell metabolic activity, migration, invasion, apoptosis, and proliferation of two OSCC cell lines (CAL-27 and SCC-9). The functional rescue assay was conducted to investigate the effect of applying the inhibitor and activator of an enriched pathway on the phenotypes of cancer cells. In addition, the zebrafish xenograft tumor model was established to investigate the influence of TRP extracts on tumor growth and metastasis in vivo. RESULTS: The target genes of TRP in OSCC were prominently enriched in the PI3K-Akt signaling pathway, with the identification of five hub genes (JUN, EGFR, ESR1, RELA, and AKT1). TRP extracts significantly inhibited cell metabolic activity, migration, invasion, and proliferation and promoted cell apoptosis in OSCC cells. Notably, the application of TRP extracts exhibited the capacity to downregulate mRNA and phosphorylated protein levels of AKT1 and ESR1, while concomitantly inducing upregulation of mRNA and phosphorylated protein levels in the remaining three hub genes (EGFR, JUN, and RELA). The functional rescue assay demonstrated that the co-administration of TRP and the PI3K activator 740Y-P effectively reversed the impact of TRP on the phenotypes of OSCC cells. Conversely, the combination of TRP and the PI3K inhibitor LY294002 further enhanced the effect of TRP on the phenotypes of OSCC cells. Remarkably, treatment with TRP in zebrafish xenograft models demonstrated a significant reduction in both tumor growth and metastatic spread. CONCLUSIONS: Triphala exerted significant inhibitory effects on cell metabolic activity, migration, invasion, and proliferation in OSCC cell lines, accompanied by the induction of apoptosis, which was mediated through the inactivation of the PI3K/Akt pathway.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Molecular Docking Simulation , Mouth Neoplasms , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Animals , Mouth Neoplasms/drug therapy , Humans , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Protein Interaction Maps , Carcinoma, Squamous Cell/drug therapy , Xenograft Model Antitumor Assays , Chromones/pharmacology , Morpholines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL